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Abstract—Spread of negative influence (N-Inf) in a net-
worked system seems to be inevitable, e.g., epidemic spread
in human networks, rumors in an online social network and
computer virus plaguing the Internet etc. The widespread of
N-Inf might cause severe damage and hence the Influence
Blocking (IB) problem is attracting ample research interest.
The IB problem aims at minimizing the N-Inf spread by
immunization, i.e. selecting k (budget size) immunization nodes
(Imm-nodes) to prevent the N-Inf from spreading. However,
existing works for IB problem are all formulated as a one-shot
task: selecting all the k Imm-nodes at the very beginning of
N-Inf spread. In real world, unforeseen events might occur and
one-shot policies will lack reserved measures to handle these
situations. A more reasonable policy is to adaptively invest the
budget based on the observation of N-Inf spread along as the
time goes by. With the adaptive policy, we can both reserve
resources for handling unforeseen events and save unnecessary
costs if the spread of N-Inf dies out quickly.

Motivated by the above considerations, we propose a novel
Adaptive Influence Blocking (AIB) problem. Given the inter-
mediate observations of N-Inf spread, the AIB problem aims at
selecting Imm-nodes adaptively. We design a k-R (k-nodes-per-
Round) policy which selects k Imm-nodes for each round until
the budget is exhausted, and an α-T (α-Tolerance) policy which
selects a new Imm-node if the expected N-Inf spread exceeds a
threshold α. Scalable algorithms with provable approximation
guarantees and error bounds are implemented for these policies
and significant improvements on time complexity are achieved.
Experimental results on real-world datasets demonstrate the
effectiveness and scalability of the proposed methods.
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I. INTRODUCTION

Controlling the spread of negative influence (N-Inf) in a

networked system is an interesting research problem [1]–

[3], which finds applications in multiple domains such as

epidemiology [4], public health [5], cyber security [6] and

social media [7]. As the problem of minimizing the N-Inf

spread is studied by researchers from different areas, many

different names have been proposed for it. For convenience,

we term it as Influence Blocking (IB) problem in this paper.

Assuming the seed nodes (N-seeds) that start to spread

N-Inf are known, the IB problem aims to select k nodes

to immunize. The immunization nodes (Imm-nodes) can be

regarded as removed from the network till the end of N-

Inf spread. Accordingly, the subgraphs connecting to the

Imm-nodes are separated from the N-seeds and become less

susceptive. In many applications, immunization is proven to

be efficient for bringing an infectious disease under control,

stifling a computer virus in its infancy or restricting a

malicious rumor within a small circle [8]–[13].

Existing works [8]–[16] for IB problem adopt the one-shot

formulation: selecting the k Imm-nodes in the beginning

when the N-Inf (or N-seeds) are observed. During the

subsequent process of N-Inf spread, these Imm-nodes are

kept immunized. In practice, such one-shot policy exhibits

two drawbacks. First, the N-Inf spread is highly stochastic

and unforeseen events may happen [17], [18]. The one-shot

policy leaves no reserved measures for handling emergencies

and great damages are likely to occur. Second, if a node is

expected to make little reduction on N-Inf spread, keeping

it immunized is useless and will incur unnecessary cost.

In fact, immunizing nodes are usually temporary measures,

e.g., closing public places during a fierce epidemic, shutting

down electronic communication channels during a social un-

rest and immunizing influential users when rumors sweeping

through the social networks, etc. These temporary measures

generally cannot last for too long a time [19].

Considering the two issues above, a more robust approach

is to adaptively select and release Imm-nodes based on the

observation of N-Inf spread along with the time advancing.

In each time round, the available observation offers the

evidence for estimating the future reduction on N-Inf spread

of current Imm-nodes. Accordingly, we can release the Imm-

nodes with low future reduction, and select new Imm-nodes.

This adaptive policy enables a more flexible treatment of the

N-inf spread by either reserving budgets for a spread more

fierce than expected, or saving unnecessary cost if the N-

Inf dies out quickly. We construct an example in Fig.1 to

illustrate the benefits of adaptive policies more clearly.

The topology of the example network is shown in Fig.1(a).

The infected nodes are colored by red and node S is the N-

seed that starts the N-Inf spread at time round 0. Suppose S
independently infects nodes A,B,C,D with probability of
1
2 respectively in time round 1, and all other nodes (including
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(a) Original Network Topology (b) IB Instance (c) AIB Instance (d) AIB Instance

Figure 1. Example of Adaptive Influence Blocking

A,B,C,E) succeed to infect their neighbours in the next

time round with probability of 1 once infected. For the IB

problem where 2 Imm-nodes are allowed to be selected, the

one-shot policy will select A and B as Imm-nodes and keep

them immunized till the end of N-Inf spread. The expected

number of saved nodes by immunizing A,B is 14 · 12 = 7,

which is the largest possible with budget of 2. As shown

in Fig.1(b), if the real spread of N-Inf follow the red bold

arrows, 14 nodes (including A,B themselves) will be saved.

However, if N-Inf spread as in Fig.1(c), i.e., infecting node

C,E, keeping immunizing A,B till the end of spread (3 time

rounds) is useless and wasteful. However, the adaptive policy

may immunize A,B in time round 1, but release them and

immunize D,F in time round 2, based on the observation

that the N-Inf infect C,E at time round 1. The effectiveness

of the adaptive policy is obvious, i.e., 9 nodes are definitely

saved as illustrated in Fig.1(c). If the N-Inf spread follows

the case in Fig.1(d), the adaptive policy will immunize A,B
in time round 1, but release them and only immunize F in

time round 2. Obviously, lower cost is incurred but better

performance is achieved. The cases in Fig.1(b), 1(c) and

1(d) happen with the same probability, which demonstrate

the necessity of invoking the adaptive policy.

In this paper, we present the first study on Adaptive

Influence Blocking (AIB) problem. The AIB problem aims

at minimizing the N-Inf spread by adaptively selecting Imm-

nodes for current time round based on the observation

of previous rounds. It seems untouchable to tackle AIB

problem without any constraint. Thus we first introduce the

k-R (k-Nodes-per-Round) setting which constrains to select

k Imm-nodes for each time round t ∈ [T ], with k, T given

in advance and k · T being the total budget. Note T can

be viewed as a critical time that the temporary measures

are demanded.1 Under the k-R setting, we design the k-R

policy that can approximately solve AIB problem with a

1− e−(1−1/e)− ε approximation ratio to the optimal policy.

Though the k-R policy is effective, it always exhausts all the

budget which is not flexible. Therefore, we further design an

α-T (α-Tolerance) policy which balance a tradeoff between

efficiency and effectiveness. More flexibly, the α-T policy

selects Imm-nodes based on the current N-Inf spread results

1Counter measures such as efficient vaccine for epidemic or antivirus
software will be developed after a certain critical time, and then blocking
influence is not necessary.

with a tolerance factor α. If the proportion between expected

number of infected nodes and the total node number exceed

α, α-T policy will select new Imm-nodes. The α-T policy

can achieve a (1−α)(1−e−
1

1−α ) approximation ratio which

is dependent on the value of α.

For both the k-R policy and α-T policy, we greatly

improve the scalability by incorporating the state-of-the-

art reverse influence sampling (RIS) approach [20]–[22]. In

each case, the RIS method needs to be carefully revised and

we show that the proposed scalable algorithms can achieve

near-linear running time with respect to the network size,

greatly improving their counterpart policies. Based on RIS

method, we also design two one-shot policies under k-R

constraint, which select all Imm-nodes in the very beginning

without any observation. These two one-shot policies exhibit

interesting trade-off between efficiency and effectiveness and

are used as baselines in our experiments.

To demonstrate the effectiveness of the proposed methods,

we conduct experiments on real-world networks. Our exper-

imental results show that the proposed policies are more

effective than baselines, and the scalable implementations

run in orders of magnitude faster than their counterparts

while keeping the performance at the same level. The results

also show some interesting findings, such as the α-T policy

could save considerable budget with a price of less reduction

on N-Inf spread. This may suggest that in practice one may

need to consider whether spending the cost of collecting the

feedbacks and making decision of investing more budget in

each round till the end of N-Inf spread, or spending up the

budget in the first few rounds. It opens new directions for

further investigations.

To summarize, our major contributions are: (1) We pro-

pose a novel AIB problem which more effectively reduce

N-Inf spread by adaptively invest the budget based on step-

wise observations. (2) We design effective k-R policy and

α-T policy for AIB problem and showing their trade-offs. (3)

We develop highly scalable algorithms for the two policies.

(4) We conduct experiments on real-world networks and

demonstrate the effectiveness of the proposed algorithms.

Note that all proofs are included in the appendix.

II. RELATED WORKS

There is much literatures on preventing the N-Inf spread in

a networked system and manipulating the network topology
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is proven to be an effective technique [8]–[13]. A large

amount of works try to select the optimal set of nodes/edges

to immunize, so as to minimize the N-Inf spread.

Assuming the N-seeds are known, a part of works try to

minimize the influence spread by finding the optimal Imm-

node set. The work of [24]–[26] adopt similar techniques

for selecting the Imm-node set. By constructing a specific

tree structure rooted at the infected nodes, they select the

nodes that can save the maximum number of descendants

in the trees. The work of [8] select the Imm-nodes by a

greedy algorithm and prove the approximation guarantees

under Linear Threshold model. Wang et al. [19] further

consider users’ experience with the time period where users

are willing to be immunized.

Without the assumption of knowing N-seeds, another part

of works study a more global influence blocking strategy.

It has been proved that whether an epidemic can survive

in a network is deeply intertwined with the spectral radius

[6]. Under this premise, sequent studies [12], [13] boil

down the problem to the optimization of the spectral radius

and propose efficient methods to evaluate the perturbation

of the removal of each node/edge on the spectral radius.

Other heuristic methods are also explored, such as using

“betweenness centrality” [27] or “degree centrality” [16] for

measuring the importance of nodes.

Another approach for preventing influence is to start a

competing campaign in the network, which is formally

defined in [14] as the eventual influence limitation (EIL)

problem. The works in [28], [29] propose variants of com-

petitive Linear Threshold model and develop approximation

algorithms to solve the EIL problem. More recently, a

scalable algorithm is developed in [15] for solving EIL

problem which reduces the time complexity to near linear to

the network size while retains the approximation guarantees.

III. PRELIMINARIES

In this section, we first introduce the Linear Threshold

(LT) Model [30] which describe the N-Inf spread process.

A. Linear Threshold (LT) Model.

Let G = (V,E) be the social network where V,E are

the node and edge set. In the LT model [30], each edge

(u, v) ∈ E is associated with a diffusion weight puv defined

by function p : E → [0, 1]. We require that
∑

u puv ≤
1, ∀v ∈ V . If (u, v) /∈ E, define puv = 0. Meanwhile, each

node v chooses a threshold θv uniformly at random from the

interval [0, 1], which represents the weighted fraction of v’s

in-neighbors that must be infected to let v become infected.

Given the random choices of node thresholds, and a N-

seed set S ∈ V , the dynamics the LT model proceed in

discrete time rounds 0, 1, 2,...., as follows. Initially, at round

0, nodes in S are infected. Then at any time round t ≥ 1,

nodes who have been infected in previous rounds remain

infected, and a node v becomes infected if its threshold θv

is surpassed by the total weights of its currently infected

in-neighbors. That is,
∑

u:u is infected puv ≥ θv. The process

continues until no more infections are possible.

B. Live-Edge Graph

The LT model can be equivalently described as propaga-

tions in live-edge graphs [30]. Here we first describe the pro-

cess of generating a random live-edge graph L = (V,EL).
For each v ∈ V , we randomly pick only one live-edge

(u, v) from its incoming edges with the weight puv , and

with probability 1 − ∑
u∈V puv , no live-edge is selected.

All the picked live-edges consist the live-edge set EL.

Given a Imm-node set B, all nodes in B are kept immu-

nized till the end of N-Inf spread, which can be equivalently

viewed as removed from the network. Then for a random

generated live-edge graph L = (V,EL) and a N-seed set S,

if there exists a path from any node in S to v through edges

in EL, with no nodes in B lying on the path, then node v
becomes infected in live-edge graph L. Let RL(S|B) denote

the set of nodes in L that becomes infected, and σ(S|B) be

the expected number of infected node that S can infect under

LT mode given Imm-node set B. It is proved in [30] that

σ(S|B) = E[|RL(S|B)|], where the expectation is taken

over the distribution of live-edge graphs.

The IB problem aims to select an Imm-node set B with

at most size k, which can minimize σ(S|B), or equivalently

maximize the reduction on N-Inf spread σ(S|∅)− σ(S|B).

IV. ADAPTIVE INFLUENCE BLOCKING (AIB) PROBLEM

Assuming the observation of N-Inf spread is available

after each time round, we can select the Imm-nodes in a

sequential manner for each round, depending on the current

observation and the remaining budget. The AIB problem is

to find the optimal policy that accordingly selecting Imm-

nodes round by round within budget, so as to maximize the

reduction on N-Inf spread.

A. Problem Definition

For AIB problem under LT model, we denote φF : E →
[0, 1] as the function that represents the realization of N-Inf

spread, i.e., a random live-edge graph for LT model where 1

represents the edge is live and 0 otherwise. For any N-seed

set S and time round t, we are able to observe the status

(infected or not) of all nodes that are t-hop neighbours of

nodes in S, via live-edges under φF . We can also observe

the corresponding status (live or not) of in-coming edges of

these t-hop neighbour nodes. The union of such observations

can be represented by a partial realization φt ⊆ φF .

We denote (v, t) as the immunization pair (Imm-pair)
which means immunize node v at time round t. In a live-

edge graph, if v becomes infected at time round t, then select

Imm-pair (v, t) can prevent v together with all its decedents

from being infected in this live-edge graph. Now we define

our adaptive policy as π : φt−1 → (v, t), which is a function
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from the partial realization, or previous observation, to Imm-

pair (v, t), determining which Imm-pair to selected in the

next time round given φt−1.

Assume there is a known prior probability distribution

p(φF ) := P [Φ = φF ] over realizations. Given a realization

φF , we use B to denote the Imm-pair set selected by policy

π under φF . Note here B is only constrained by a total

budget, denoted as k · T , which is written for convenience

of presenting the policies below. Then the reduction on N-Inf

spread by policy π is f(π) =
∑

φF p(φF ) · (σ(S|φF , ∅) −
σ(S|φF ,B)), where σ(·) is the number of nodes that are

infected under corresponding realization.

Definition 1 (AIB): The AIB problem aims to find a pol-
icy π for maximizing f(π): π = argmaxπ f(π).

In the following section, we will introduce the k-R policy

and α-T policy. Here we first show the adaptive monotonic-

ity and adaptive submodularity which are the theoretical

basis of the proposed policies. For convenience, we define

g(B|φF ) = σ(S|φF , ∅)−σ(S|φF ,B) as the N-Inf reduction

function for the realization φF and the Imm-pair set B.

Lemma 1: For any pair (v, t), the N-Inf reduction func-
tion g(B|φF ) satisfies (1) adaptive monotonicity: g(B ∪
{(v, t)}|φ) − g(B|φ) ≥ 0 for any partial realization φ ⊆
φF , and (2) adaptive submodularity: g(B ∪ {(v, t)}|φ) −
g(B|φ) ≥ g(B∪{(v, t)}|φ′)−g(B|φ′), for any φ ⊆ φ′ ⊆ φF .

B. k nodes per Round (k-R) Policy: πk

It is hard to derive a policy without any constraint.

So we first consider the k-R setting that selects k Imm-

pairs for each time round t ∈ [T ]. The budget is divide

into T equal-sized parts, given as k · T . We then propose

the k-R policy in Algorithm 1. We use f(B|φ) to denote

the expected reduction on N-Inf spread by Imm-pair set

B under the partial realization φ. The Imm-pairs in each

round are selected greedily with largest marginal gain (Lines

4-7). After k Imm-pairs are selected, we wait one time

round and observe the new partial realization (Lines 9-

10). The approximation guarantees and time complexity are

established in the following theorem.

Theorem 1: Let π∗ be the optimal policy under the k-R
setting. For any ε > 0 and � > 0, with probability at least
1− 1/n�, the k-R policy πk satisfies:

f(πk) ≥ (1− e−(1−1/e) − ε)f(π∗),

if the input R ≥ (8k2+2kε)n log(kTn�+1)/ε2. The running
time for T rounds is O(k3�Tn2m log(knT )/ε2), where the
time of sampling a random live-edge graph is O(m).

Given total budget k ·T , we can tune the value of k and T
to achieve larger reduction on N-Inf spread. Though the k-R

policy is effective, it always exhausts all the budget, which

is not flexible. Therefore, we introduce α-Tolerance (α-T)

Policy which select the Imm-pair set more flexibly.

Algorithm 1: k-R Policy: πk (G,R, k, T )

1 Initialize B = {Bi} with Bi = ∅, ∀i ∈ [T ];
2 Initialize node set V ′ = {v|v is reachable from S in G};
3 for t = 1 to T do
4 while |Bt| < k do
5 ∀v ∈ V ′, estimate f(B ∪ {(v, t)}|φt−1) by sampling

live edge graphs with nodes in V ′ for R times;
6 (v, t) = argmaxv∈V ′ f(B ∪ {(v, t)}|φt−1);
7 Bt = Bt ∪ (v, t);

8 Wait one round and obtain partial realization φt;
9 if φt−1 = φt then break;

10 else {φt−1 = φt; t = t+ 1; update V ′ based on φt;}
11 return B

C. α-Tolerance (α-T) Policy: πα

The α-T policy is shown in Algorithm 2. Let H0 be the

set of nodes that N-seed set S can reach in G. The α-T

policy use α as a tolerance threshold. If σ(S|φ,B) > α|H0|,
or equivalently f(B|φ) < (1 − α)|H0| in the current time

round, we select new Imm-pairs (Lines 6-10). Otherwise, we

wait for a time round and obtain the new partial realization

(Lines 11-14). Note the input K = k · T for consistency.

Theorem 2: Let π∗ be the optimal policy. The expected
number of savable nodes of πα is bounded by f(πα) ≥
(1− α)(1− e−

1
1−α )f(π∗).

We can see when α = 0, the approximation of α-

T policy becomes 1 − e−1. In this case, the budget are

exhausted in the very beginning, and all Imm-pairs are

selected for time round 1, since the condition in line 6

always holds. In contrast, when α = 1, no Imm-pair will

be selected. As the name implies, the tolerance threshold

α indicates the intensity of the N-Inf spread that we can

tolerate. Empirically tuning this parameter is practical for

real-world scenarios, as we would not exhaust all the budget

but invest the part that can reduce the N-Inf spread down to

our tolerance threshold.

V. SCALABLE IMPLEMENTATIONS

In this section, we speed up the proposed policies by

developing scalable implementations. Here we first introduce

a useful tool of Reverse Reachable (RR) set.

For the LT model, an RR set Rv rooted at node v ∈ V
is the set of nodes that can reach v in a random generated

live edge graph. A random RR set R is an RR set rooted

at a node picked uniformly at random from V . Note for

LT model, a random RR set is a simple path, since each

node in a random generated live edge graph has at most one

incoming edge. Given a N-seed set S and a set R of random

generated RR sets, it is proved that σ(S|∅) = n ·E[FR(S)],
where n is total node number and FR(S) is the fraction

that S ∩ R �= ∅, ∀R ∈ R. Thus the expected N-Inf spread

of S can be estimated by generating enough number of RR

sets. The RR sets have already been utilized for solving IB
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Algorithm 2: α-T Policy: πα (G,R,K)

1 Initialize B = {Bi} with Bi = ∅, ∀i ∈ [T ];
2 Initialize node set V ′ = {v|v is reachable from S in G};
3 Initialize current time round t = 1;
4 H0 = V ′;
5 while K > 0 do
6 if f(B|φt−1) ≤ (1− α)|H0| then
7 ∀v ∈ V ′, estimate f(B ∪ {(v, t)}|φt−1) by sampling

live edge graphs for nodes in V ′ for R times;
8 (v, t) = argmaxv∈V ′ f(B ∪ {(v, t)}|φt−1);
9 B = B ∪ {(v, t)};

10 K = K − 1;

11 else
12 Wait one round and obtain partial realization φt;
13 if φt−1 = φt then break;
14 else {φt−1 = φt; t = t+1; update V ′ based on φt;}
15 return B

problem [15]. Here we revise it carefully for solving AIB

problem under LT model.

A. Reverse Immunization Imm-Pair (RIP) Set
We define the Reverse Immunization Pair (RIP) Set Mv

for node v, which is a set of Imm-pairs generated for

corresponding RR set Rv . We first explain how we generate

an RIP set and then present the relation between RIP set,

RR set and the LT propagation process.

Under LT model, during the generation process of Rv ,

whenever we visit a new node u that would be added into

Rv , we can simultaneously record the distance between u
and v as duv . The generation of Rv ends when meeting a

N-seed or no new node can be visited. If a N-seed s is met,

for all visited node u, we add (u, dsv − duv) into Mv . If

no N-seed is met, Mv = ∅. See an example in Fig.2 where

the RR set Rv for node v is {a, b, c, d}. The corresponding

RIP set Mv is illustrated in Fig.2. If we use any Imm-pair

in Mv , the node v can be definitely saved in this live-edge

graph if the N-seed a start to spread N-Inf at time round 0.

Figure 2. An RIP Set Example for LT Model.

Formally, given the Imm-pair set B, N-seed set S, a ran-

dom RR set Rv generated for node v and its corresponding

RIP set Mv , we say Mv is covered, or equivalently Rv is

saved, if (1) S∩R �= ∅, and (2) B∪Mv �= ∅. Lemma 2 shows

the connection between RIP set and the LT propagation.
Lemma 2: For any N-seed set S, Imm-pair set B and

node v, the probability that v can be saved in a random
LT spread process is equal to the probability that a random
generated RIP set Mv is covered.

Suppose we generate a set M of RIP sets. Let FM(B) be

the fraction of RIP sets in M that are covered by Imm-pairs

in B. Based on Lemma 2, we have f(B) = n · E[FM(B)],
where n is the number of nodes. This implies that we can

accurately estimate f(B) by generating a large enough set

M. The optimal Imm-pair set can be found by seeking the

optimal set of Imm-pairs that make the most number of RIP

sets covered, which is a max-cover problem. Similar tech-

niques are adopted for the influence maximization problem

[20]–[23]. These works all have the same structure and we

base our work on the IMM algorithm [22].

B. Scalable Implementation for k-R Policy

We base the implementation of k-R policy on the IMM

algorithm, and name it as k-R-IMM which is shown in

Algorithm 3. The idea of k-R-IMM is to run IMM (Lines 10-

27) in each round t which selects k Imm-pairs for consisting

Bt. The main differences include four points. First, we

generate RIP pair set M instead of the set of RR sets in

IMM, and the root of each RIP set is selected from V ′

(Lines 12-16 and 22-26). Second, the ImmSelection(R, k, t)
in Lines 15 and 23 constructs Bt by searching the space

{(v, t)|v ∈ V ′} with current time round t and greedily

adding the Imm-pair (v, t) with largest marginal gain of

FM(B∪{v, t}). Third, the new generated RIP sets may have

been covered by the Imm-pairs selected for previous rounds.

When we generate an RIP set for round t, we should check

that if it is already covered. If so, this RIP set is invalid

for round t and we need to withdraw it and generate a new

RIP set (Lines 15-16 and 25-26). Fourth, we need to adjust

the parameters (Lines 4-8) used in the algorithm carefully

to guarantee the approximation stated in Theorem 3.

Theorem 3: For any ε > 0 and � > 0, with probability
at least 1 − 1/n�, the k-R-IMM algorithm still ensure
a 1 − e−(1−1/e) − ε approximation ratio to the optimal
policy. Meanwhile, the total running time for T rounds is
O(T (k + �)(n+m) log(nT )/ε2).

C. Scalable Implementation of α-T Policy

The implementation of α-T policy requires to estimate

f(B|φ) accurately in each time round based on the current

N-Inf spread results. By using RIP sets, we can implement

such estimation with provable error bound. We denote K =
k ·T as the total budget and FM(B|φ) as the fraction of RIP

sets in M that are covered by Imm-pairs in B where M is

the set of RIP sets generated2 based on the realization φ.

Lemma 3: Given φ, for any ε > 0 and � > 0, if we
generate a set M of RIP sets with |M| ≥ (2 + ε)|H0| ·
log(2Kn�+1)

ε2 , then for any non-empty Imm-pair set B, with at
least 1−1/(Kn�+1) probability, we have

∣∣|H0|·FM(B|φ)−
f(B|φ)∣∣ < εf(B|φ).

Based on the above lemma, we can construct a sizable

set of RIP sets for each time round to estimate f(B|φ).
2Given realization φ, the nodes infected at last time round are new N-

seeds to start N-Inf spread. Then RIP sets are generated accordingly.
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Algorithm 3: k-R-IMM(G,S, k, T, ε, �)

1 Initialize B = {Bi} with Bi = ∅, ∀i ∈ [T ];
2 Initialize node set V ′ = {v|v is reachable from S in G};
3 // Lines 4-8 set the parameters for ensuring Theorem 3;
4 � = �+ ln(2T )/ lnn; M = ∅; LB = 1;

5 ε0 = e1−1/eε/2; ε′ =
√
2ε0;

6 α =
√
� lnn+ ln 2 + lnT ; β =

√
(1− 1/e)(ln(nk )) + α2;

7 λ′ = (2 + 2ε′/3)(ln(nk ) + � lnn+ lnT + ln log2 n)n/ε
′2;

8 λ∗ = 2n((1− 1/e)α+ β)2/ε20;
9 for t = 1 to T do

10 for i = 1 to log2(n− 1) do
11 x = n/2i;θi = λ′/xi;
12 while |M| < θi do
13 Select a root node u from V ′ uniformly at

random;
14 Generate a valid RIP set for u;
15 if M is valid then Insert it into M;
16 else continue;

17 Bt=ImmSelection(M, V ′, k, t);
18 if nFR(B ∪Bt) ≥ (1 + ε′)x then
19 LB = nFR(B ∪Bt)/(1 + ε′);
20 break;

21 θ = λ∗/LB;
22 while |M| < θ do
23 Select a root node u from V ′ uniformly at random;
24 Generate a RIP M set for u;
25 if M is valid then Insert it into M;
26 else continue;

27 Bt=ImmSelection(M, V ′, k, t);
28 // Lines 10-27 are the main body of IMM algorithm,

using the adjusted parameterizations in Lines 4-8;
29 B = B ∪Bt;
30 Wait one round and obtain partial realization φt;
31 if φt−1 = φt then break;
32 else {φt−1 = φt; t = t+ 1; update V ′ based on φt;}
33 Return B
34 Function ImmSelection(M, V ′, k, t)
35 Initialize a set Bt = ∅;
36 while |Bt| < k do
37 (v, t) = argmaxv∈V ′ FM(B ∪ {(v, t)});
38 Bt = Bt ∪ (v, t);

39 return Bt

Then we can decide whether to select another Imm-pair. The

algorithm is shown in Algorithm 4 and named as α-T-RIP

(α-T policy based on RIP set). A main difference between

Algorithm 4 and k-R-IMM is that in each time round, when

we are generating RIP sets, we do not need to check whether

it is valid, since FM(·) is estimated with the Imm-pair set B
consisting of all previous selected Imm-pairs. We establish

the accumulative error bound in Theorem 4.

Theorem 4: With probability of at least 1 − 1/n�, the
expected number of savable nodes of πα is bounded by

f(πα) ≥ 1− α

1 + ε
(1− e−

1−ε
1−α )f(π∗)− 2ε

1 + ε
|H0|K.

Algorithm 4: α-T-RIP(G,S,K, ε)

1 Initialize B = {Bi} with Bi = ∅, ∀i ∈ [T ];
2 Initialize node set V ′ = {v|v is reachable from S in G};
3 while k ≥ 0 do
4 Generate a set M following Lemma 3, with root nodes

selected from V ′ uniformly at random;
5 if FM(B|φt−1) ≤ (1− α)|H0| and K > 0 then
6 v = argmaxu∈V FM(B ∪ {(u, t)}|φt−1);
7 B = B ∪ {(v, t)};
8 K = K − 1;

9 else
10 Wait one round and obtain partial realization φt;
11 if φt−1 = φt then break;
12 else {φt−1 = φt; t = t+1; update V ′ based on φt;}
13 return B

D. One-Shot Policies

Sometimes, collecting the feedbacks of N-Inf spread is not

easy since the N-Inf spread usually occurs accidently and

spread fast. Then we have to deal with the AIB problem

under one-shot setting, i.e., selecting the Imm-pair set at

the very beginning without any observation. To this end, in

this section we propose two one-shot policies, which exhibit

interesting trade-off between efficiency and scalability.

The two one-shot policies also select k Imm-pairs for each

time round t ∈ [T ]. We denote h(B) = σ(S|∅)− σ(S|B) as

the reduction function for the selected Imm-pair set B. Then

the objective function is

B = argmax
B:|Bt|≤k,∀t∈[T ]

h(B).

Define the candidate space as V = {V1, ...,VT } where

Vt = {(v, t)|v ∈ V ′}, ∀t ∈ [T ]. Similarly, we show the

monotonicity and submodularity which are the theoretical

basis of the proposed one-shot policies.

Lemma 4: The function h(B) satisfies (1) monotonicity:
for any B ⊆ B′ ⊆ V , h(B) ≤ h(B′); and (2) submodularity:
for any B ⊆ B′ ⊆ V and any pair (v, t) ∈ V\B′, h(B ∪
{(v, t)})− h(B) ≥ f(B′ ∪ {(v, t)})− f(B′).

1) One-Shot Round-Polling (OS-RP) Algorithm: The idea

of OS-RP policy is similar to k-R policy, i.e., select the Imm-

pair round by round. For each time round t, we search the

space Vt. Only after we select k Imm-pairs for the current

round, we go on to the selection for the next round. Utilizing

the RIP set, the whole process of OS-RP policy is completely

the same to k-R-IMM, only with one difference: V ′ is not

changed for all the T selection iterations since we do not

observe the N-Inf spread results. That is to say, lines 30-32 in

Algorithm 3 are not needed. The resulting algorithm would

have the same approximation guarantee and time complexity

with k-R-IMM, as shown in Theorem 5.

Theorem 5: Let B∗ be the optimal solution for maximiz-
ing h(·) under k-R setting. For any ε > 0 and � > 0, with

1507



probability at least 1−1/n�, the output B of OS-RP satisfies:

h(B) ≥ (1− e−(1−1/e) − ε)h(B∗),
The total running time is O(T (k+ �)(n+m) log(nT )/ε2).

2) One-Shot Individual Polling (OS-IP) policy: The idea

of OS-IP policy is that at each iteration, we searches (v, t)
in the whole space of V and picks the one having the

largest marginal gain on reduction of N-Inf spread, without

replacement. If the budget for some round t exhausts, then

Vt is removed from V . By utilizing RIP sets and by similar

modification based on IMM, we implement OS-IP and

present it in Algorithm 5. Compared to Algorithm 3, Algo-

rithm 5 has two major difference. First, the parameterizations

in Algorithm 5 (Lines 4-7) are slightly different from that

of Algorithm 3, which is made to ensure the approximation

guarantees stated in Theorem 6 below. Second, the function

ImmSelection(M, V ′, k, t) (in Lines 17 and 27 of Algorithm

3) is replaced by the function OS-IP-Selection(M, V ′, k, T ),
shown in Algorithm 5. OS-IP-Selection needs to search

(v, t) from the whole space V while ImmSelection only

search space Vt. Such cross round searching incurs at least

a factor of T spending on the running time of OS-IP than

that of OS-RP. However, the space V with the constraint

of k-R setting is a partitioned matroid, which indicates that

selecting the Imm-pair set B to cover the maximum number

of RIP sets in M is an instance of submodular maximization

under partition matroid. Thus the approximation ratio can be

improved to 1
2 −ε, larger than 1−e−(1−1/e)−ε ≈ 0.46−ε.

We conclude the theoretical guarantees along with time

complexity in the following theorem.

Theorem 6: Let B∗ be the optimal solution for maximiz-
ing h(·) under k-R setting. For any ε > 0 and � > 0, with
probability at least 1− 1

n� , the output B of OS-IP satisfies:

f(B) ≥ (
1

2
− ε)f(B∗).

The total running time is O(T 2(k + �)(n+m) log(n)/ε2).
Though OS-RP algorithm has a slightly lower approx-

imation ratio, it gives a factor of T saving on the time

complexity. It is because in each iteration, OS-IP needs to

search a space T times larger than that of OS-RP. This

shows the trade-off between efficiency and approximation

ratio, that OS-IP has a better performance guarantee while

OS-RP is more efficient.

VI. EXPERIMENTS

A. Experimental Settings

1) Datasets: We use two public available3 real-world

networks, NetHEPT and NetPHY, in our experiments. They

are both collaboration networks extracted from the e-print

arXiv (http://www.arXiv.org). The NetHEPT is extracted

from the High Energy Physics - Theory section (form 1991

3http://research.microsoft.com/en-us/people/weic/projects.aspx

Algorithm 5: OS-IP(G,T, k, ε, �)

1 Initialize B = {Bi} with Bi = ∅, ∀i ∈ [T ];
2 Initialize node set V ′ = {v|v is reachable from S in G};
3 // Lines 4-7 set the parameters for ensuring Theorem 3;

4 � = �+ ln 2/ lnn; M = ∅; LB = 1; ε′ =
√
2ε;

5 α =
√
� lnn+ ln 2; β =

√
1/2(T ln(nk )) + α2;

6 λ′ = (2 + 2ε′/3)(T ln(nk ) + � lnn+ ln log2 n)n/ε
′2;

7 λ∗ = 2nT (α/2 + β)2/ε2;
8 Do the same to Lines 10-29 in Algorithm 3, with the function

ImmSelection(M, V ′, k, t) in Lines 17 and 27 replaced by
the function OS-IP-Selection(M, V ′, k, T ) shown below;

9 Return B
10 Function OS-IP-Selection(M, V ′, k, T )
11 Initialize B = {Bi} with Bi = ∅, ∀i ∈ [T ];
12 while true do
13 (v, t) = argmax(v,t):v∈V FM(B ∪ {(v, t)}),
14 subject to: |Bt| < k, ∀t ∈ [T ];
15 If (v, t) = null then break;
16 Else B = B ∪ (v, t);

17 Return B

to 2003), and the NetPHY is extracted from Physics section.

The nodes in both networks are authors and an edge between

two nodes means the two authors coauthored at least one

paper. We clean the dataset by removing the duplicated

edges. Then the network of NetHEPT has 15223 nodes

and 31387 edges, and the network of NetPHY has 37154

nodes and 174161 egdes. The edges in both NetHEPT and

NetPHY are undirected. In the experiments, we change each

undirected edge to a bi-directed edge.

2) Edge probabilities: Given a network G(V,E), we set

the probabilities on each edge according to the LT model

as follows: for a given node v ∈ V , we draw a probability

value p̃uv for each edge e = (u, v) ∈ E that is incoming

into v, uniformly at random from the interval [0, 1]. In

addition, we draw from the same interval a probability value

p(v) representing no infection, i.e the probability that v’s

infected parents fail to infect it. Since the probabilities on

the edges plus the probability of no infection must sum to 1,

we then normalize each probability over the sum of all the

probabilities, i.e., we obtain puv = p̃uv/(
∑

u∈V p̃uv+p(v)).
3) Comparison algorithms.: For AIB problem, we pro-

pose k-R policy and α-T policy and their scalable implemen-

tations. Meanwhile, we design two one-shot policies OS-RP

and OS-IP as baselines. We compare the 6 proposed algo-

rithms with a non-adaptive IB method. All the algorithms

are listed below, with k · T being the total budget.

1) k-R policy. It is Algorithm 1, which selects k Imm-

nodes for each round based on the current observation.

2) α-T policy. It is Algorithm 2, which selects new

Imm-node if the expected spread of N-Inf exceeds a

threshold α based on the current observation.

3) k-R-IMM. It is Algorithm 3, which is the scalable

implementation of k-R policy.
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Figure 3. The Results of Reduction Ratio with T=5.
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Figure 4. The Results of Reduction Ratio with k=125.

4) α-T-RIP. It is Algorithm 4, which is the scalable

implementation of α-T policy.

5) OS-RP. It is Algorithm 5, which selects k Imm-nodes

round by round at the very beginning.

6) OS-IP. It is Algorithm 6, which selects k Imm-nodes

cross rounds at the very beginning.

7) GreedyCutting(GC). It is a classic algorithm for edge

blocking [8] under LT model. It estimates a score

for each edge which represents the reduction on N-

Inf spread by removing this edge. We can simply

estimate the reduction on N-Inf spread of each node by

summing up the out-going edges. We then immunize

the top-k scored nodes till the end of N-Inf spread.

4) Parameters and Measurements.: For k-R policy and

α-T policy and GreedyCutting, we sampling 1000 live-

edge graphs to estimate the N-Inf spread in each time

round. For k-R-IMM, α-T-RIP, OS-RP and OS-IP, we set

ε = 0.5 and l = 1 by default. For each dataset, we use

IMM algorithm to select the top-200 influential nodes and

uniformly randomly choose 30 of them as the N-seeds to

start the N-Inf spread. We measure the performance by the

influence spread reduction ratio as

reduction ratio =
σ(S|∅)− σ(S|B)

σ(S|∅) .

We construct 5000 live-edge graphs and evaluate the reduc-

tion ratio of all methods by averaging on these live-edge

graphs. We run the experiments on a Linux server with 24

Core Intel E5 CPU and 256GB RAM.

B. Experimental Results

1) Reduction Ratio and Budget Cost: We first conduct

experiments on the two dataset by fixing T = 5 and varying

k from 25-150. We set α = 0.25 for NetHEPT dataset

Table I
THE BUDGET USED IN DIFFERENT METHODS

NetHEPT (T=5) C1 C2 NetHEPT (k=125)
k=25,50,75 k · T

k · T T=1,2,3
k=100,125,150 403± 3 T=4,5,6

NetPHY (T=5) C1 C2 NetPHY (k=125)
k=25,50 k · T

k · T T=1,2
k=75,100,125,150 320± 6 T=3,4,5,6

C1 denotes the α-T policy and α-T-RIP method.
C2 denotes the other comparisons.

and 0.55 for NetPHY dataset respectively. The results of

reduction on N-Inf spread are shown in Fig.3.

In Fig.3, we can see the k-R policy and α-T policy

outperform the three baselines in both the two datasets.

Meanwhile, the k-R-IMM and α-T-RIP achieve comparable

performance to their counter-parts. These all demonstrate the

effectiveness of the proposed methods.

An interesting phenomenon is that in both Fig.3(a) and

Fig.3(b), the two α-T methods outperform the two k-R

methods when 50 ≤ k ≤ 100. However, when k < 50 and

k > 100, the two α-T methods are less effective. Specifically

in Fig.3(a), we can see when k < 25, the two α-T methods

even exhibit worse performance than the three baselines. It

is due to the setting of tolerance threshold α. For a fixed

α, a small budget may be exhausted very soon since the

expected N-Inf spread can easily exceed threshold α. In

contrast, a large budget will not bring great improvement

for α-T methods since if the N-Inf is reduced down to the

threshold by the current Imm-pair set B, it would not easily

exceed the threshold again, and thus no more budget will

be invested. This makes the lower reduction ratio for α-T

methods when k is very small or very large.

We also conduct experiments by fixing k = 125 and

varying T from 1 to 6. The results of reduction on N-

Inf spread are shown in Fig.4. Similarly, we can see the

proposed k-R methods and α-T methods outperform the

three baselines in both the two datasets. However, in both

Fig.4(a) and Fig.4(b), the α-T methods perform completely

worse than the two k-R methods. This is because, under our

setting, the two α-T methods tends to spend less budget,

with a price of worse performance. To show such trade-

off, we list the budget used for all the methods in Table I.

In Table I, we can see the two α-T methods indeed save

considerable budget. This suggests that in practice one may

need to consider whether spending more budget for further

preventing the N-Inf spread, or saving the budget with an

acceptable price of less reduction on N-Inf spread. It may

open new directions for further investigations.

Note also the two one-shot policies OS-RP and OS-IP

slightly outperform the GC method in all the cases. This in-

dicates that if no observation is available, these two policies

also bring considerable improvement on effectiveness.

For further exploring the impact of the threshold α, we

conduct experiments by varying α, as discussed below.
2) Impact of α: We fix T = 5, k = 125 and vary the

tolerance threshold α to see its impact, shown in Fig.5.
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Figure 5. The Results of Reduction Ratio Varying α with T=5 and k=125.

0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03
100

200

300

400

500

600

700

B
ud

ge
t U

se
d

α

k−R−IMM
α−T policy

α−T−RIP

(a) NetHEPT

0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06
100

200

300

400

500

600

700
B

ud
ge

t U
se

d

α

k−R−IMM
α−T policy

α−T−RIP

(b) NetPHY

Figure 6. The Results of Budget Used Varying α with T=5 and k=125.

In Fig.5(a), we can see the two α-T methods both

perform comparably with k-R-IMM only α ∈ [0.02, 0.22]
for NetHEPT and α ∈ [0.05, 0.52] for NetPHY. When α
becomes larger or smaller, the reduction ratio falls quickly.

For the case that α is small, the expected N-Inf spread may

easily exceeds α, which means we will exhaust the budget

in the first few rounds. This is not effective since all the

immunization are done within a short term which cannot

significantly reduce the N-Inf spread. For the case that α
is large, the expected N-Inf spread cannot easily exceed α,

which means by investing a few budget (or no budget), we

can make the N-Inf spread below the tolerance threshold

α. Such compromise on N-Inf spread reduction brings high

efficiency on saving the budget, as present in Fig.6.

In Fig.6, we can see only with small α, the α-T methods

exhaust all the budget. With α being large, the budget used

decrease very fast. Specifically, when α ∈ [0.2, 0.22] in

Fig.6(a) and α ∈ [0.5, 0.52] in Fig.6(b), the two α-T meth-

ods both save considerable budget with the reduction ratio

comparable with that of k-R-IMM method. This indicates

that when we are adopting α-T policy, an appropriate α may

bring effective reduction on N-Inf spread both with low cost.

3) Scalability: The theoretical analyses in this paper

show that the proposed implementations of the two policies

achieve significant improvement on time complexity. In this

section, we show that our experimental results confirm such

improvement. Fig.7, Fig.8 and Fig.9 are the running time

results of the same sets of experiments in Fig.3, Fig.4

and Fig.5 respectively. We can see in all the cases, the

implementations k-R-IMM and α-T-RIP run faster than their

counter-parts with at least up to three orders of magnitude.

Such high scalability makes the proposed methods more

practical in real-world scenarios.

An interesting phenomenon is that the two α-T-RIP meth-

ods exhibit a step change in all the cases, with k, T and
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Figure 7. The Running Time varying k with T=5.
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Figure 8. The Running Time varying T with k=125.
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Figure 9. The Running Time varying α with T=5 and k=125.

α being larger in Fig.7, Fig.8 and Fig.9 respectively. The

rational is that, the N-Inf usually spread fiercely in the first

few time rounds, and has a long tail that it spread for many

time rounds but infect a few nodes in each round. Thus, after

we invest some budget to make the expected N-Inf spread

below the threshold α, it cannot easily exceed the threshold

α again, in general. However, with budget not exhausted, we

still need to check in each time round whether the expected

N-Inf may exceed the threshold α. Still due to the long

tail of N-Inf spread, the accumulated time incurred of such

check becomes large. It causes a consideration that whether

we should keep collecting the feedbacks for decisions of

investing more budget in each time round until the N-Inf

spread ends, or using up the budget in the first few rounds. It

leaves an interesting future work of finding a more effective

allocation of the budget.

VII. CONCLUSION AND FUTURE WORK

Motivated by the realistic demand of adaptive policies for

influence blocking, in this paper we present the first study

of Adaptive Influence Blocking (AIB) problem. Given the

observations of N-Inf spread results in each time round, the

AIB problem aims at selecting Imm-nodes adaptively. We

design a k-R policy and an α-T policy together with scalable

implementations. The experimental results demonstrate that

the proposed policies are more effective than baselines, and
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the scalable implementations run in orders of magnitude

faster than their counterparts while keeping the performance

at the same level. An interesting trade-off among reduction

on N-Inf spread, the incurred budget cost and the running

time are observed. It may open new directions of investiga-

tions such as finding more effective adaptive policy. Besides,

finding adaptive policies are interesting research directions

for network applications with dynamic social relation or

node attributes [35]–[37].
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APPENDIX

PROOFS OF LEMMAS AND THEOREMS

A. Proof of Lemma 1

Proof: Note a realization can be viewed as a random

live edge graph. Then the adaptive monotonicity trivially

follows since adding a new Imm-pair at any time will never

lead the infected nodes increase in this realization, which

gives g(B ∪ {(v, t)}|φ) − g(B|φ) ≥ 0 hold for any partial

realization φ ⊆ φF . For the submodularity, consider a certain

node u which will be infected under realization φF with no

Imm-pair selected. Note we have φ ⊆ φ′ ⊆ φF . Suppose

u can be saved by B ∪ {(v, t)} but not by B under partial

realization φ′. This implies that u is saved by B∪{(v, t)} but

not by B under partial realization φ too, since the adaptive

monotonicity of g(·). In addition, if u is saved by B∪{(v, t)}
but not by B under partial realization φ, it may not be saved

by B∪{(v, t)} under partial realization φ′ since its infection

may be inevitable, i.e., it may already be infected or the

live edge path from a source to u can no longer be blocked

by B ∪ {(v, t)}. The above two statements together give

g(B ∪ {(v, t)}|φ) − g(B|φ) ≥ g(B ∪ {(v, t)}|φ′) − g(B|φ′)
which proves the adaptive submodularity.

B. Proof of Theorem 1

Proof: When R = (8k2 + 2kε)n log(kTn�+1)/ε2, we

can bound the performance of the selection in each time

round by the factor ε. Let B = {(v, t)} be a random

Imm-pair set with fixed t, and p = E[f(B)]/n and δ =
εf(B∗)/2knp. Then by Chernoff bounds, we have

Pr
[∣∣f̂(B)− f(B)∣∣ ≥ ε

2k
f(B∗)

]

= Pr
[∣∣Rf̂(B)/n−Rp

∣∣ ≥ Rδp
]

< 2 exp

(
− δ2pR

2 + δ

)
= 2 exp

(
− ε2f(B∗)R
8k2n+ 2kεn

)

≤ 2 exp

(
− ε2f(B∗)
(8k2T 2 + 2kTε)n

R

f(B∗)
)
≤ 1

n�nkT
.

Since each iteration of the greedy selection inspects at

most n sets and the number of iteration executed is k. So the

algorithm inspects at most kn sets. By the union bound, we

can see with probability of 1− 1/(n�T ), each set inspected

by the greedy selection satisfies:
∣∣f̂(B)− f(B)∣∣ < ε

2kf(B∗)
where f̂(B) is the estimated value of f(B). Note in each

iteration, we select the node with largest marginal gain on

reduction on N-Inf spread, which needs to estimate the

increase of f(·) by adding a new Imm-pair. Thus the error

incurred by each selection is at most ε
kf(B∗) and the total er-

ror for k selections is εf(B∗). Therefore, the selected Imm-

pair set in each round satisfies f(B) ≥ (1− 1/e− ε)f(B∗).
From the general result of Theorem 5.2 in [31] and the

adaptive monotonicity and adaptive submodularity proved

in Lemma 1, we know that if in each round we find an α
approximation of the optimal solution of this round, then

the greedy adaptive policy is an 1 − e−α approximation

of the optimal greedy policy π∗. Replace ε by ε0 and by

union bound, we have the final output B of k-R policy

satisfies f(B) ≥ (1 − e−(1−1/e−ε0))f(B∗) with probability

of at least 1 − 1/n�. Let ε0 = e1−1/eε/2, it is easy

to verify that 1 − e−(1−1/e−ε0) ≥ 1 − e−(1−1/e) − ε in

this case. Finally, the total running time of T rounds is

O(TknRm) = O(k3�Tn2m log(knT )/ε2).

C. Proof of Theorem 2

Proof: Assume two partial realizations φ and φ′ sat-

isfying φ ⊆ φ′. Let B and B′ be Imm-pair sets that

selected under partial realization φ and φ′ respectively,

satisfying B ⊆ B′. Based on Lemma 1, we have (1)

g(B∪{(v, t)}|φ)−g(B|φ) ≥ g(B∪{(v, t)}|φ′)−g(B|φ′), and

(2) g(B∪{(v, t)}|φ)−g(B|φ) ≥ g(B′∪{(v, t)}|φ)−f(B′|φ)
hold for any B ⊆ B′ ⊆ V and any pair (v, t) with v ∈ V ′.

Let πμ
t be the level-t-truncation of policy πμ obtained by

running until it terminates or until time round t. We assume

that the ith selection is executed at time round ti by selecting

(vi, ti+1) and φt is the partial realization at time round t. Let

Bi be the Imm-pair set after the ith selection, Hi be the node

set in which the nodes’ infection probabilities are reduced

by Bi. We use fH(π|φ) to denote the expected reduction on

N-Inf spread of π under realization φ. Then we have

f(πα
ti+1

|φti )− f(πα
ti
|φti )

= E[g(Bi ∪ {(vi+1, ti + 1)}|φti )− g(Bi|φti )]

≥ maxv E[gH0\Hi
(Bi ∪ {(v, ti + 1)}|φti )− gH0\Hi

(Bi|φti )]

≥ 1

K
(fH0\Hi

(π∗|φti )− fH0\Hi
(πα

ti
|φti )),

The first inequality follows from that πα selects the

Imm-pair that maximizes the entire marginal gain, and the

second inequality follows from the properties of submodular

maximization. Let Δi = f(π∗)− f(πα
i )/(1− α). We have

(1− α)(Δi −Δi+1) = f(πα
ti+1

)− f(πα
ti
)

= E[f(πα
ti+1

|φti )− f(πα
ti
|φti )]

≥ E[
1

K
(fH0\Hi

(π∗|φti )− fH0\Hi
(πα

ti
|φti ))],

f(π∗|φti )− f(πα|φti )/(1− α)

= (fH0\Hi
(π∗|φti )− fH0\Hi

(πα|φti )/(1− α))

+ (fHi
(π∗|φti )− fHi

(πα|φti )/(1− α))

≤ (fH0\Hi
(π∗;φti )− fH0\Hi

(πα|φti ))

+ (fHi
(π∗|φti )− fHi

(πα|φti )/(1− α))
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According to Algorithm 2, we update the time round

when the condition is satisfied, which means f(B|φ) ≥
(1 − α)|H0|. Thus fHi(π

∗|φti) − fHi(π
α|φti)/(1 − α) ≤

0, and then we have f(π∗|φti) − f(πα|φti)/(1 − α) ≤
fH0\Hi

(π∗;φ)−fH0\Hi
(πα|φ). Thus (1−α)(Δi−Δi+1) ≥

E[ 1K (f(π∗i |φti)− f(πα
i |φti)/(1− α)] = 1

kΔi.
It follows that Δi+1 ≤ (1 − 1

(1−α)K )Δi. Hence we

have ΔK ≤ (1 − 1
(1−α)K )Δ0 ≤ e−

1
1−αΔ0, and thus

f(π∗)−f(πα
tK )/(1−α) ≤ e−

1
1−αΔ0 = e−

1
1−α f(π∗). Hence

f(πα) ≥ (1− α)(1− e−
1

1−α )f(π∗).

D. Proof of Lemma 2

Proof: Suppose we generate an RR set Rv and a

corresponding RIP set Mv for v on a live edge graph g
constructed from G. Let ρ1 be the probability that Mv is

covered, and ρ2 be the probability that v can be saved in a

random LT process. Then, ρ1 equals the probability that after

generating a random live-edge graph, the following events

happen: (1) there exists a live-edge path that can reach v
from a node s in S, (2) on every such path, there lies a node

u that the distance between u and s is t, and (3) (u, t) ∈Mv .

Meanwhile, ρ2 equals the probability that from any node

s ∈ S that can reach v through a live-edge path, there lies

a node u which is a t-hop neighbour of s in the live-edge

graph and (u, t) ∈Mv . It follows that ρ1 = ρ2.

E. Proof of Theorem 3

Proof: The process of k-R-IMM in each time round

is essentially the same as IMM with parameters ε0 and �′.
Thus, following the result in [22], we know that for each

round, with probability at least 1 − 2/n�′ = 1 − 1/(n�T ),
the constructed B is a (1− 1/e− ε0) approximation of the

optimal Imm-pair set for this round. Then following the

similar arguments as in Theorem 1, we know that across

all T rounds, with probability at least 1 − 1/n�, f(πk) ≥
(1− e−(1−1/e−ε0))f(π∗) ≥ (1− e−(1−1/e) − ε)f(π∗).

F. Proof of Lemma 3

Proof: Let p be the probability that a random RIP set

M is covered by B. Then we have p = E[FM(B|φ)/θ] =
f(B|φ)/|H0|. Let δ = εf(B|φ)/|H0|p. Then by Chernoff

bounds, we have

Pr
[∣∣|H0|FM(B|φ)− f(B|φ)∣∣ ≥ εf(B|φ)]

= Pr

[∣∣θ · FM(B|φ)− pθ
∣∣ ≥ εf(B|φ)

|H0|p
θp

]

< 2 exp

(
− δ2pθ

2 + δ

)
≤ 2 exp

(
− ε2f2(B|φ)θ
2|H0|2p+ εf(B|φ)|H0|

)

≤ 2 exp

(
− ε2f(B|φ)
(2 + ε)|H0|

θ

)
≤ 1

N
.

The final inequality holds since f(B|φ) ≥ 1. Therefore,

the claim follows.

G. Proof of Theorem 4
Proof: Similar to the proof of Theorem 2, we use

FM(π|φ) to denote the number of RIP sets in M that

covered by the Imm-pair set selected by π under realization

φ. We first prove the error bound of each selection of new

Imm-pair. By Lemma 3, we have

f(πα
r+1|φ)− f(πα

r |φ) + f(πα
r |φ)

≥ f̂(πα
r+1|φ)− FM(πα

r |φ) + FM(πα
r |φ)

1 + ε

= |H0|maxz [FM(B ∪ {z}|φ)− FM(B|φ)] + FM(B|φ)
1 + ε

≥ |H0|FM(B ∪ {u∗}|φ)− FM(B|φ) + FM(B|φ)
1 + ε

≥ 1− ε

1 + ε
(f(B ∪ {u∗}|φ)− f(B|φ) + f(B|φ))

Accordingly, we have

f(πα
r+1|φ)− f(πα

r |φ)
≥ 1− ε

1 + ε
(f(B ∪ {u∗}|φ)− f(B|φ))− 2ε

1 + ε
|H0|

≥ 1− ε

1 + ε

1

K
(fH0\Hi

(π∗|φ)− fH0\Hi
(πα

r |φ))−
2ε

1 + ε
|H0|

Then let Δi = f(π∗)− f(πα
i ) · 1+ε

1−α . We have 1−α
1+ε (Δi−

Δi+1) = f(πα
i+1) − f(πα

i ) ≥ E[ 1−ε
1+ε

1
K (fH0\Hi

(π∗|φ) −
fH0\Hi

(πα
r |φ)) − 2ε

1+ε |H0|]. According to Algorithm 4, we

update the time round when the condition is un-satisfied,

which means f(B|φ) ≥ 1−α
1+ε |H0|. Thus fHi

(π∗|φr) −
fHi(π

α|φr) · 1+ε
1−α ≤ 0, and f(π∗|φr) − f(πα|φr) · 1+ε

1−α ≤
fH0\Hi

(π∗|φ) − fH0\Hi
(πα|φ). Thus 1−α

1+ε (Δi − Δi+1) ≥
E[ 1K (f(π∗i |φi)− f(πα

i |φi) · 1+ε
1−α − 2ε

1+ε |H0|] = 1−ε
1+ε

1
KΔi −

2ε
1+ε |H0|.

Thus we have Δi+1 ≤ (1 − 1−ε
1−α

1
k )Δi +

2ε
1−α |H0| =⇒

ΔK ≤ (1 − 1−ε
1−α

1
K )Δ0 + 2ε

1−α |H0|k ≤ e−
1−ε
1−αΔ0 +

2ε
1−α |H0|K =⇒ f(π∗) − f(πα

rK ) · 1+ε
1−α ≤ e−

1−ε
1−α f(π∗) +

2ε
1−α |H0|K =⇒ f(πα) ≥ 1−α

1+ε (1 − e−
1−ε
1−α )f(π∗) −

2ε
1+ε |H0|K.

H. Proof of Lemma 4
Proof: Consider a certain node u which can be saved by

B′∪{(v, t)} but not by B′. This implies (1) u is not saved by

B either, and (2) the live path to u must be blocked by (v, t).
Hence, u is saved by B∪{(v, t)} but not by B, which gives

the submodularity. Note a nonnegative linear combination

of monotone and submodular functions is also monotone

and submodular. We can derive h(B ∪ {(v, t)}) − h(B) ≥
h(B′ ∪ {(v, t)})− h(B′).
I. Proof of Theorem 5 and Theorem 6

We omit the detailed proofs here since Theorem 5 is a

direct application of the double submodular property estab-

lished in [32], [33], and Theorem 6 is a direct application of

the monotone and submodular partition matroid optimization

[34], respectively.
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